Fractal-Based Point Processes

2005

Steven Bradley Lowen

Harvard Medical School McLean Hospital

Malvin Carl Teich

Boston University Columbia University

WILEY

Appendix C List of Symbols

C.1	Roman Symbols	506
C.2	Greek Symbols	510
C.3	Mathematical Symbols	511

505

506 LIST OF SYMBOLS

C.1 ROMAN SYMBOLS

Symbol	Description	Reference
a	Modulation depth	Eq. (13.16)
a-d	General continuous parameters	-
а	Shot-noise impulse response function area	Eq. (10.12)
Α	Short-time (high-frequency) cutoff	Eq. (7.1)
A(T)	Normalized Haar-wavelet variance	Sec. 3.4.3
$A_W(T)$	Normalized general-wavelet variance	Sec. 5.4.3
$A_{\tau}(k)$	Normalized interval Haar-wavelet variance	Sec. 3.3.4
$A^{(2)}(T)$	Normalized Haar-wavelet covariance	Eq. (3.75)
\mathcal{A}	Multiplicative rate constant	Prob. 6.8
\mathbf{A}_L	Lorentz vector potential	Prob. 10.6
b	Major axis of planetary elliptical orbit	Sec. 2.7.2
В	Long-time (low-frequency) cutoff	Eq. (7.1)
B(t)	Brownian motion	Sec. 2.4.2
$B^*(t), B^{\dagger}(t)$	Scaled versions of Brownian motion	Sec. 2.4.2
$B_H(t)$	Fractional Brownian motion	Sec. 6.1
$B'_H(t)$	Fractional Gaussian noise	Sec. 6.2.1
$B'_{H2}(t,v)$	Rectangularly filtered fractional Gaussian noise	Eq. (6.11)
$B_{H}(t)$	Multifractal version of $B_H(t)$	Sec. 5.5.1
B	Minimal covering width	Sec. 7.2.5
В	Magnetic field vector	Prob. 10.6
с	Speed of light in free space	Prob. 10.6
C_{Euler}	Euler's constant ($\doteq 0.5772156649$)	Eq. (12.37)
C_n	Cumulant (semi-invariant)	Eq. (3.9)
C_{μ}	Rate coefficient of variation	Sec. 4.3
$\dot{C_{\tau}}$	Interevent-interval coefficient of variation	Eq. (3.5)
$C_{\psi,N}(a,b)$	Continuous-time wavelet transform	Sec. 3.4.3
$\mathcal{C}, \mathcal{C}_n$	Cantor set, <i>n</i> th-stage approximation	Sec. 2.4.1
$\mathcal{C}^F, \mathcal{C}^F_n$	Fat Cantor set, nth-stage approximation	Sec. 2.4.1
d	Distance	Sec. 2.7.2
dN(t)	Point process	Sec. 3.2
D	Fractal dimension	Sec. 3.5.4
D_d	Diffusion-constant exponent	Prob. 10.8
D_q	Generalized (Rényi) dimension	Sec. 3.5.4
D_s^{-}	Spectral-dimension exponent	Prob. 10.8
D_{E}	Euclidian dimension	Sec. 2.7.3
$D_{ m HB}$	Hausdorff–Besicovitch dimension	Sec. 3.5.4
D_0	Capacity (box-counting) dimension	Sec. 2.1.1
D_1	Information dimension	Sec. 3.5.4
D_2	Correlation dimension	Sec. 3.5.4
$\operatorname{erfc}(\cdot)$	Complementary error function	Eq. (7.16)
E	Energy	Prob. 7.10

Symbol	Description	Reference
$E[\cdot]$	Expectation or mean	
\mathbf{E}^{\Box}	Electric field vector	Prob. 10.6
f	Frequency in cycles per unit time (Hz)	Sec. 3.3.3
$f(\cdot)$	General function	
f_S	Spectrum fractal cutoff frequency	Eq. (5.1)
f	Frequency in cycles per interval (dimensionless)	Sec. 3.3.3
F(T)	Normalized variance	Sec. 3.4.2
$\mathcal{F}\{\cdot\}$	Fourier transform	Sec. 9.4
F	Force or field	Sec. 2.7.2
$g(\cdot)$	General function	
G(t)	Coincidence rate	Sec. 3.5.1
h	Planck's constant	Prob. 10.6
h(K,t)	Shot-noise impulse response function	Sec. 9.1
$h_T(K,t)$	Integrated-shot-noise impulse response function	Eq. (10.2)
H	Hurst exponent	Chapter 6
H(f)	Fourier transform of impulse response function	Eq. (9.25)
Η	Magnetic induction vector	Prob. 10.6
i	$\sqrt{-1}$	
i	Space-charge-limited current	Sec. 2.7.2
$\operatorname{int}(\cdot)$	Integer function	
j	Quantum number of a simple system	Sec. 2.7.2
J	Čerenkov relativistic factor	Prob. 10.6
k-n	General counting variables	
k_2	Offset delay number for detrended fluctuations	Sec. 3.3.6
K	Shot-noise impulse response amplitude	Sec. 9.1
$K_{\gamma}(x)$	Modified Bessel function of the second kind	Eq. (7.5)
l	Wavelet transform position index	Sec. 3.3.4
l_d	Correlation length	Prob. 10.9
ℓ	Decimation parameter	Sec. 11.2.2
$\ln(\cdot)$	Natural logarithm function (base e)	
$\log(\cdot)$	Logarithm function (arbitrary base)	
L	Duration of a data set	Sec. 3.5.2
$L(\cdot)$	Slowly varying function	Eq. (7.24)
$\mathcal{L}(\cdot)$	Lebesgue measure	Sec. 2.4.1
$\max(\cdot)$	Function returning largest argument	
$\min(\cdot)$	Function returning smallest argument	
$\mathrm{mod}(\cdot)$	Modulus function	
m	Order of the gamma renewal process	Prob. 4.7
M_{\perp}	General counting variable	
$M(\epsilon)$	Number of covering elements	Sec. 2.1.1
M(t)	Multifractal process	Sec. 5.5.1
\mathcal{M}	Mass of an aggregated particle	Prob. 9.3

508 LIST OF SYMBOLS

Symbol	Description	Reference
$\overline{n_v}$	Number of contiguous vanishing moments of $\psi(t)$	Sec. 5.2.5
n	Refractive index	Prob. 10.6
N(t)	Counting process	Sec. 3.2
N(L)	Number of events from origin to time L	Sec. 3.5.4
$N_a(t)$	Arrival counting process at a queue	Sec. 13.1.1
$N_s(t)$	Service counting process at a queue	Sec. 13.1.1
$\widetilde{N}(f)$	Point-process Fourier transform	Eq. (B.254)
$\mathcal{N}(0,1)$	Normalized Gaussian random variable	Prob. 6.5
$p_{\perp}(\cdot)$	Probability density function	Eq. (3.3)
$p_Q(n,t)$	Queue-length distribution	Sec. 13.1.1
$p_Z(n;T)$	Counting distribution	Eq. (3.28)
$p_{\infty}(n,t)$	Queue-length distribution (infinite buffer size)	Eq. (13.4)
$P_{\cdot}(\cdot)$	Probability distribution function	Eq. (3.3)
$\Pr{\{\cdot\}}$	Probability	-
P_B	Buffer overflow (blocking) probability	Sec. 13.1.1
q	Generalized-dimension index	Sec. 3.5.4
q(E)	Trap waiting time	Prob. 7.10
q	Charge constant	Prob. 6.8
Q(t)	Queue length	Sec. 13.1.1
Q_m	Maximum queue length (buffer size)	Sec. 13.1.1
r	Bernoulli-trial success probability	Sec. 8.1.1
r(t)	Deletion recovery function	Chapter 11
r	Distance or deformation	Sec. 2.7.2
$\operatorname{Re}\{\cdot\}$	Real part	
$R_Z(k,T)$	Count autocorrelation	Sec. 3.4.4
$R_{\tau}(k)$	Interval autocorrelation	Sec. 3.3.2
$R_2(k)$	Normalized count autocovariance	Sec. 12.3.3
$\mathcal{R}^{(1)}$	Thermodynamic gas constant	Prob. 6.8
s	Absolute time	Sec. 3.2
S	Measurement scale	Eq. (1.1)
$\operatorname{sgn}(x)$	Sign of <i>x</i>	
$S_N(f)$	Point-process spectrum	Sec. 3.4.5
$S_{W,X}(t,f)$	Wigner–Ville spectrum	Eq. (6.9)
$S_Z(f,T)$	Count spectrum	Sec. 3.5.2
$S_{\lambda}(f,T)$	Rate spectrum	Sec. 3.4.5
$S_{\tau}(f)$	Interval spectrum	Sec. 3.3.3
$S_N^{(2)}(f)$	Point-process cross-spectrum	Eq. (3.76)
$S^{(2)}_{\lambda}(f,T)$	Rate cross-spectrum	Eq. (3.77)
$S_{\tau}(t)$	Interval survivor function	Sec. 3.3.1
$S_{\vartheta}(t)$	Recurrence-time survivor function	Prob. 11.7
S	Linear-fit sum	Eq. (A.4)
\mathbf{S}	Poynting vector	Prob. 10.6

Symbol	Description	Reference
t	Absolute time	Sec. 3.2
t_G	Coincidence-rate fractal cutoff time	Eq. (5.12)
T	Counting duration or counting window	Sec. 3.2
T_A	Normalized-Haar-wavelet-variance fractal cutoff time	Eq. (5.2)
T_{Dq}	Transition time for $\eta_q(T)$	Prob. 5.5.3
T_F	Normalized-variance fractal cutoff time	Eq. (5.11)
T_R	Autocorrelation fractal cutoff time	Eq. (5.14)
\mathcal{T}	Absolute temperature	Prob. 6.8
Т	Planetary orbital period	Sec. 2.7.2
u-z	General continuous variables	
$u(\mathbf{x},t)$	Particle concentration at position \mathbf{x} and time t	Prob. 10.8
u_0	Initial particle concentration	Prob. 10.8
U(k)	Rescaled range analysis (R/S)	Sec. 3.3.5
$U_2(k)$	Normalized rescaled-range statistic	Sec. 12.3.4
v	Separation time	Sec. 6.2.1
V	Scalar velocity	Prob. 10.6
v	Vector velocity	Prob. 10.6
V	Voltage	Prob. 6.8
$\operatorname{Var}[\cdot]$	Variance	
$W(\mathcal{B})$	Expected time between coverings	Eq. (7.20)
$W_{n,k}$	Multiplicative-process weighting factors	Sec. 5.5.1
$W_{\psi, au}(k,l)$	Discrete-time wavelet transform	Sec. 3.3.4
x	Position vector	Prob. 10.8
X(t)	Continuous-time process	Sec. 6.1.2
$X_T(t)$	Integrated shot-noise process	Eq. (10.2)
$X_{\Sigma}(t)$	Binomial-noise process	Eq. (8.14)
Y(k)	Detrended fluctuation analysis	Sec. 3.3.6
$Y_2(k)$	Normalized detrended-fluctuation statistic	Sec. 12.3.5
z	Exponent in fractal Bartlett-Lewis process	Sec. 10.6.4
$Z_k(T)$	Event count	Sec. 3.2

510 LIST OF SYMBOLS

C.2 GREEK SYMBOLS

Symbol	Description	Reference
$\overline{\alpha_x}$	Fractal exponent obtained from statistic x	Sec. 5.1.6
β	Fractal-shot-noise exponent	Sec. 9.1
γ	Fractal-renewal-process exponent	Chapter 7
$\Gamma(x)$	Complete Eulerian gamma function	Eq. (4.44)
$\Gamma(x, a)$	Incomplete Eulerian gamma function	Eq. (9.6)
$\delta(t)$	Dirac delta function	Sec. 3.5.1
Δ	Diffusion constant	Prob. 10.8
ϵ	Small number	Sec. 2.1.1
ε	Small number parameter	Sec. 12.3.9
ζ	Stable-distribution parameter	Sec. 9.2
$\eta_a(T)$	Generalized-dimension scaling function	Sec. 3.5.4
$\eta_0(T)$	Capacity-dimension scaling function	Sec. 3.5.4
θ	Phase angle	Prob. 4.10
$\vartheta(t)$	Forward recurrence time	Eq. (3.10)
κ	Boltzmann's constant	Prob. 7.10
$\lambda_k(t)$	Sample rate (measured value)	Eq. (3.27)
$\Lambda(t)$	Integrated rate (model property)	Eq. (4.28)
μ	Fixed rate of a point process (model property)	Sec. 4.1
$E[\mu]$	Expected rate of a point process (model property)	Sec. 3.5.1
$\mu(t)$	Varying rate of a point process (model property)	Sec. 3.5.1
μ_a	Arrival rate at a queue	Sec. 13.1.1
μ_s	Service rate at a queue	Sec. 13.1.1
ν	Frequency of electromagnetic radiation	Prob. 10.6
ξ	Weibull distribution parameter	Sec. 13.3.3
$\rho(s,t)$	Normalized autocorrelation	Eq. (6.28)
ρ_{μ}	Service ratio (server utilization)	Eq. (13.3)
$\varrho_{\tau}(k)$	Interval serial correlation coefficient	Eq. (3.17)
σ	Standard deviation	Eq. (3.4)
au	Interevent interval	Sec. 3.2
$ au_e$	Effective dead time	Eq. (11.21)
$ au_f$	Fixed dead time	Eq. (11.16)
$ au_w$	Waiting time in a queue	Eq. (13.6)
ϕ_L	Lorentz scalar potential	Prob. 10.6
$\phi_{\tau}(\omega)$	Characteristic function	Eq. (3.6)
$\varphi(f)$	Fourier transform of wavelet $\psi(x)$	Eq. (5.41)
Φ	Smaller of counting and impulse-response times	Eq. (A.125)
χ^2	Linear-fit error	Eq. (A.3)
$\psi(x)$	Mother wavelet (time domain)	Sec. 3.3.4
Ψ	Integrate-and-reset threshold	Fig. 4.1
ω	Angular frequency (radians per unit time)	Eq. (4.46)
Ω	Double integral in normalized variance	Eq. (A.136)

C.3 MATHEMATICAL SYMBOLS

Symbol	Description	Reference
*	Complex conjugation	Sec. 3.5.5
*	Convolution	Sec. 4.2
\otimes	Vector cross product	Prob. 10.6
\widehat{x}	Estimate of x	
!	Factorial of preceding expression	
≡	Definition	
÷	Very close to	
\approx	Approximately equal to	
\sim	Varies as	
\ll	Much less than	
\gg	Much greater than	
0-	Number infinitesimally smaller than zero	
0+	Number infinitesimally greater than zero	